Some Remarks on the Effect of Interphases on the Mechanical Response and Stability of Fiber-Reinforced Elastomers
نویسندگان
چکیده
In filled elastomers, the mechanical behavior of the material surrounding the fillers -termed interphasial material-can be significantly different (softer or stiffer) from the bulk behavior of the elastomeric matrix. In this paper, motivated by recent experiments, we study the effect that such interphases can have on the mechanical response and stability of fiberreinforced elastomers at large deformations. We work out in particular analytical solutions for the overall response and onset of microscopic and macroscopic instabilities in axially stretched 2D fiber-reinforced nonlinear elastic solids. These solutions generalize the classical results of Rosen (1965, “Mechanics of Composite Strengthening,” Fiber Composite Materials, American Society for Metals, Materials Park, OH, pp. 37–75), and Triantafyllidis and Maker (1985, “On the Comparison between Microscopic and Macroscopic Instability Mechanisms in a Class of Fiber-Reinforced Composites,” J. Appl. Mech., 52, pp. 794–800), for materials without interphases. It is found that while the presence of interphases does not significantly affect the overall axial response of fiber-reinforced materials, it can have a drastic effect on their stability. [DOI: 10.1115/1.4006024]
منابع مشابه
Effect of Adding Nanoclay on the Mechanical Behaviour of Fine-grained Soil Reinforced with Polypropylene Fibers
In this study the performance of clay nano-particles on the soil reinforced with Polypropylene fibers (PP-fiber) has been investigated. Also a series of investigations concerning the effect of random orientation of fibers on the engineering behaviour of soil were conducted. Soil mixtures were modified with varying percentages of nanoclay and Fibers. Unconfined compressive strength (UCS), Compac...
متن کاملRELATIONSHIP OF TENSILE STRENGTH OF STEEL FIBER REINFORCED CONCRETE BASED ON GENETIC PROGRAMMING
Estimating mechanical properties of concrete before designing reinforced concrete structures is among the design requirements. Steel fibers have a considerable effect on the mechanical properties of reinforced concrete, particularly its tensile strength. So far, numerous studies have been done to estimate the relationship between tensile strength of steel fiber reinforced concrete (SFRC) and ot...
متن کاملFinite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites
An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...
متن کاملEffect of Fiber Surface Treatment on Wear Characteristics of Carbon Fiber Reinforced Polyamide 6 Composites
Ozone modification method and air-oxidation were used for the surface treatment of polyacrylonitrile(PAN)-based carbon fiber. The surface characteristics of carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS). The interfacial properties of carbon fiber reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fiber pull-out tests. As a result...
متن کاملEvaluation of Mechanical and Tribological Properties of Glass/Carbon Fiber Reinforced Polymer Hybrid Composite
Polymer matrix composites used in different industrial applications due to their enhanced mechanical properties and lightweight. However, these materials are subjected to friction and wear situations in some industrial and automobile applications. Therefore, there is a need to investigate the wear properties of polymer matrix composite materials. This article emphasizes the dry abrasive wear be...
متن کامل